Abstract

We used electrostatic force microscopy (EFM) to investigate local conducting states of atomically thin individual graphene oxide (GO) sheets and monitor the spatial evolution of their conducting properties during the reduction process. Because of the thinness of the GO sheets and finite carrier density, the electric field is partially screened in the reduced GO, which is manifested in the EFM phase signals. We found inhomogeneous oxidation states in as-prepared GO sheets and followed the evolution of reduction process in the individual GO sheets during both thermal and chemical reduction. We also compared the EFM measurement results with simultaneous IV characteristics to assess correlations between two measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.