Abstract

A noncontact method to evaluate the acoustic nonlinearity of surface waves in a plastically deformed aluminum alloy is proposed. Line-arrayed laser beams modulated with slit masks were used for the generation of narrowband surface waves. A laser-ultrasonic detector using a two-wave mixing (TWM) approach was also employed to detect the surface waves. The specimens were deformed by a stroke-controlled tensile tester so as to generate various degrees of tensile deformation. The experimental results showed that the acoustic nonlinearity of the laser-generated surface waves increased according to the level of tensile deformation. This tendency was in good agreement with our previous results obtained using a contact piezoelectric (PZT)-transducer as the receiver. These results imply that our noncontact technique is suitable for the evaluation of acoustic nonlinearity and can be applied to practical damage assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.