Abstract

A laboratory instrument that utilizes broadband laser ultrasonics and two-dimensional Fourier transformation for signal processing has been developed to characterize the properties of various foils and plates. Laser ultrasonics generation is achieved by using a pulsed laser which deposits pulsed laser energy on the surface of the specimen. The displacement of the resulting broadband ultrasonic modes is monitored using a two-wave mixing photorefractive interferometer. By means of the two-dimensional Fourier transformation of the detected spatial and temporal displacement wave forms, the image of density of state (DOS) for the excited ultrasound is obtained, and from it the materials properties are extracted. Results are presented for a 150μm thick paper sample, a 50μm stainless steel foil, and a 1.27mm thick aluminum plate. The DOS image demonstrates the ability to measure the properties of each generated ultrasonic modes and provides a direct, nondestructive, measure of elastic moduli of the tested specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.