Abstract

Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses micromachined gas (air)-coupled capacitive transducers for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects, while frequency shift measurements allow quantification of thinning depth. Measurement of the mode group velocity can be also used to quantify thinning depth. Similarly, thinning length can be determined by mode time-of-flight measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.