Abstract

Responses of geometrically nonlinear shell structures under combined conservative and non-conservative loads are investigated and presented in this paper. The shell structures are discretized by the finite element method and represented by the hybrid strain based three node flat triangular shell elements that were developed previously by the authors. The updated Lagrangian formulation and the incremental Hellinger-Reissner variational principle are employed. Features such as large or small strain deformation, finite rotation, updated thickness so as to account for the “thinning effect” due to large strain deformation, and inclusion or exclusion of the mid-surface director field are incorporated in the finite element formulation. Representative results of two examples are included to demonstrate the capability, accuracy and efficiency of the computational strategy proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.