Abstract

Poly(2-hydroxyethyl methacrylate) (pHEMA) has potentially broad biomedical applications: it is biocompatible and has a hardness comparable to bone when bulk polymerized. Porous biomaterials allow bone integration to be increased, especially when the pores are interconnected. In this study, three types of porogens (sugar fibers, sucrose crystals, and urea beads) have been used to prepare macroporous pHEMA. The pore volume and interconnectivity parameters of the porosity were measured by X-ray microtomography and image analysis. Sucrose crystals, having a high volumetric mass, gave large pores that were located on the block sides. Urea beads and sugar fibers provided pores with the same star volume (2.65 ± 0.46 mm3 and 2.48 ± 0.52 mm3, respectively) but which differed in interconnectivity index, fractal dimension, and Euler–Poincaré's number. Urea beads caused non-connected porosity, while sugar fibers created a dense labyrinth within the polymer. Interconnectivity was proved by carrying out surface treatment of the pHEMA (carboxymethylation in water), followed by von Kossà staining, which detected the carboxylic groups. Carboxymethylated surfaces were observed on the sides of the blocks and on the opened or interconnected pores. The disconnected pores were unstained. Macroporous polymers can be prepared with water-soluble porogens. X-ray microtomography appears a useful tool to measure porosity and interconnectedness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.