Abstract
We analyze nonconforming finite element approximations of streamline-diffusion type for solving convection-diffusion problems. Both the theoretical and numerical investigations show that additional jump terms have to be added in the nonconforming case in order to get the same \(O(h^{k+1/2})\) order of convergence in L\(^2\) as in the conforming case for convection dominated problems. A rigorous error analysis supported by numerical experiments is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.