Abstract

The nonconforming cell boundary element (CBE) methods are proposed. The methods are designed in such a way that they enjoy the mass conservation at the element level and the normal component of fluxes at inter-element boundaries are continuous for unstructured triangular meshes. Normal flux continuity and the optimal order error estimates in a broken H 1 norm for the P 1 method are established, which are completion of authors' earlier works [Y. Jeon, D. Sheen, Analysis of a cell boundary element method, Adv. Comput. Math. 22 (3) (2005) 201–222; Y. Jeon, E.-J. Park, D. Sheen, A cell boundary element method for elliptic problems, Numer. Methods Partial Differential Equations 21 (3) (2005) 496–511]. Moreover, two second order methods (the P 2 ∗ and modified P 2 ∗ methods) and a multiscale CBE method are constructed and numerical experiments are performed. Numerical results show feasibility and effectiveness of the CBE methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.