Abstract

A finite element procedure is developed for the computation of the thermoelastic properties of textile composites with complex and compact two- and three-dimensional woven reinforcement architectures. The purpose of the method is to provide estimates of the properties of the composite with minimum geometrical modeling effort. The software TexGen is used to model simplified representations of complex textiles. This results in severe yarn penetrations, which prevent conventional meshing. A non-conformal meshing strategy is adopted, where the mesh is refined at material interfaces. Penetrations are mitigated by using an original local correction of the material properties of the yarns to account for the true fiber content. The method is compared to more sophisticated textile modeling approaches and successfully assessed towards experimental data selected from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call