Abstract
Quantum electrodynamics (QED) in a strong constant magnetic field is investigated from the viewpoint of its connection with noncommutative QED. It turns out that within the lowest Landau level (LLL) approximation the 1-loop contribution of fermions provides an effective action with the noncommutative U(1) NC gauge symmetry. As a result, the Ward identities connected with the initial U(1) gauge symmetry are broken down in the LLL approximation. On the other hand, it is shown that the sum over the infinite number of the higher Landau levels (HLL's) is relevant despite the fact that each contribution of the HLL is suppressed. Owing to this nondecoupling phenomenon the transversality is restored in the whole effective action. The kinematic region where the LLL contribution is dominant is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.