Abstract

We study the field theory for the SU($N_c$) symmetric antiferromagnetic quantum critical metal with a one-dimensional Fermi surface embedded in general space dimensions between two and three. The asymptotically exact solution valid in this dimensional range provides an interpolation between the perturbative solution obtained from the $\epsilon$-expansion near three dimensions and the nonperturbative solution in two dimensions. We show that critical exponents are smooth functions of the space dimension. However, physical observables exhibit subtle crossovers that make it hard to access subleading scaling behaviors in two dimensions from the low-energy solution obtained above two dimensions. These crossovers give rise to noncommutativities, where the low-energy limit does not commute with the limits in which the physical dimensions are approached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.