Abstract
We prove the existence of global solutions to the Cauchy problem for noncommutative nonlinear wave equations in arbitrary even spatial dimensions where the noncommutativity is only in the spatial directions. We find that for existence there are no conditions on the degree of the nonlinearity provided the potential is positive. We furthermore prove that nonlinear noncommutative waves have infinite propagation speed, i.e., if the initial conditions at time 0 have a compact support then for any positive time the support of the solution can be arbitrarily large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.