Abstract

We develop a noncommutative analogue of the spectral decomposition with the quasideterminant defined by I. Gelfand and V. Retakh. In this theory, by introducing a noncommutative Lagrange interpolating polynomial and combining a noncommutative Cayley–Hamilton's theorem and an identity given by a Vandermonde-like quasideterminant, we can systematically calculate a function of a matrix even if it has noncommutative entries. As examples, the noncommutative spectral decomposition and the exponential matrices of a quaternionic matrix and of a matrix with entries being harmonic oscillators are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.