Abstract
We construct a new class of scalar noncommutative multi-solitons on an arbitrary Kahler manifold by using Berezin's geometric approach to quantization and its generalization to deformation quantization. We analyze the stability condition which arises from the leading 1/hbar correction to the soliton energy and for homogeneous Kahler manifolds obtain that the stable solitons are given in terms of generalized coherent states. We apply this general formalism to a number of examples, which include the sphere, hyperbolic plane, torus and general symmetric bounded domains. As a general feature we notice that on homogeneous manifolds of positive curvature, solitons tend to attract each other, while if the curvature is negative they will repel each other. Applications of these results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.