Abstract
We study the quantum sphere as a quantum Riemannian manifold in the quantum frame bundle approach. We exhibit its 2-dimensional cotangent bundle as a direct sum Ω0,1âΩ1,0 in a double complex. We find the natural metric, volume form, Hodge * operator, Laplace and Maxwell operators and projective module structure. We show that the q-monopole as spin connection induces a natural Levi-Civita type connection and find its Ricci curvature and q-Dirac operator . We find the possibility of an antisymmetric volume form quantum correction to the Ricci curvature and Lichnerowicz-type formulae for We also remark on the geometric q-Borel-Weil-Bott construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.