Abstract
Employing results by Melo, Nest, Schick and Schrohe on the K-theory of Boutet de Monvel’s calculus of boundary value problems, we show that the noncommutative residue introduced by Fedosov, Golse, Leichtnam and Schrohe vanishes on projections in the calculus. This partially answers a question raised in a recent collaboration with Grubb, namely whether the residue is zero on sectorial projections for boundary value problems: This is confirmed to be true when the sectorial projection is in the calculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.