Abstract
Noncommutative oscillators are first-quantized through an abelian Drinfel'd twist deformation of a Hopf algebra and its action on a module. Several important and subtle issues making possible the quantization are solved. The spectrum of the single-particle Hamiltonians is computed. The multi-particle Hamiltonians are fixed, unambiguously, by the Hopf algebra coproduct. The symmetry under particle exchange is guaranteed. In d=2 dimensions the rotational invariance is preserved, while in d=3 the so(3) rotational invariance is broken down to an so(2) invariance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.