Abstract
In this article we study in detail the category of noncommutative motives of separable algebras Sep(k) over a base field k. We start by constructing four different models of the full subcategory of commutative separable algebras CSep(k). Making use of these models, we then explain how the category Sep(k) can be described as a “fibered Z-order” over CSep(k). This viewpoint leads to several computations and structural properties of the category Sep(k). For example, we obtain a complete dictionary between directs sums of noncommutative motives of central simple algebras (=CSA) and sequences of elements in the Brauer group of k. As a first application, we establish two families of motivic relations between CSA which hold for every additive invariant (e.g. algebraic K-theory, cyclic homology, and topological Hochschild homology). As a second application, we compute the additive invariants of twisted flag varieties using solely the Brauer classes of the corresponding CSA. Along the way, we categorify the cyclic sieving phenomenon and compute the (rational) noncommutative motives of purely inseparable field extensions and of dg Azumaya algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.