Abstract
The structure theory for noncommutative Jordan algebras with chain conditions leads to the following simple algebras: (I) division algebras, (II) forms of nodal algebras, (III) algebras of generic degree two, (IV) commutative Jordan matrix algebras, (V) quasi-associative algebras. The chain condition is always satisfied in a division algebra, hence does not serve as a finiteness restriction. Consequently, the general structure of noncommutative Jordan division algebras, even commutative Jordan division algebras, is unknown. In this paper we will classify those non-commutative Jordan division algebras which are forms of algebras of types (II)-(V); this includes in particular all the finite-dimensional ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.