Abstract

We present a method for computing the Hilbert series of the algebra of invariants of the complex symplectic and orthogonal groups acting on graded noncommutative algebras with homogeneous components which are polynomial modules of the general linear group. We apply our method to compute the Hilbert series for different actions of the symplectic and orthogonal groups on the relatively free algebras of the varieties of associative algebras generated, respectively, by the Grassmann algebra and the algebra of 2×2 upper triangular matrices. These two varieties are remarkable with the property that they are the only minimal varieties of exponent 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.