Abstract
We discuss extension of soliton theories and integrable systems into noncommutative spaces. In the framework of noncommutative integrable hierarchy, we give infinite conserved quantities and exact soliton solutions for many noncommutative integrable equations, which are represented in terms of Strachan's products and quasi-determinants, respectively. We also present a relation to an noncommutative anti-self-dual Yang-Mills equation, and make comments on how "integrability" should be considered in noncommutative spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.