Abstract

The importance of the Voros product in defining a noncommutative Schwarzschild black hole is shown. The entropy is then computed and the area law is shown to hold upto order . The leading correction to the entropy (computed in the tunneling formalism) is shown to be logarithmic. The Komar energy E for these black holes is then obtained and a deformation from the conventional identity E = 2STH is found at the order . This deformation leads to a nonvanishing Komar energy at the extremal point TH = 0 of these black holes. Finally, the Smarr formula is worked out. Similar features also exist for a deSitter–Schwarzschild geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call