Abstract

In this paper, we study holomorphic semicocycles over semigroups in the unit disk, which take values in an arbitrary unital Banach algebra. We prove that every such semicocycle is the solution to a corresponding evolution problem. We then investigate the linearization problem: which semicocycles are cohomologous to constant semicocycles? In contrast with the case of commutative semicocycles, in the noncommutative case nonlinearizable semicocycles are shown to exist. We derive simple conditions for linearizability and show that they are sharp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.