Abstract

The non-commutative O(N) Gross-Neveu model is solved in the large N limit in two and three space-time dimensions. The commutative version of the two dimensional model is a renormalizable quantum field theory, both in a coupling constant expansion and an expansion in 1/N. The non-commutative version has a renormalizable coupling constant expansion where ultraviolet divergences can be removed by adjusting counterterms to each order. On the other hand, in a previous work, we showed that the non-commutative theory is not renormalizable in the large N expansion. This is argued to be due to a combined effect of asymptotic freedom and the ultraviolet/infrared mixing that occurs in a non-commutative field theory. In the present paper we will elaborate on this result and extend it to study the large N limit of the three dimensional Gross-Neveu model. We shall see that the large N limit of the three dimensional theory is also trivial when the ultraviolet cutoff is removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.