Abstract
Noncommutative geometry applies ideas from geometry to mathematical structures determined by noncommuting variables. Within mathematics, it is a highly interdisciplinary subject drawing ideas and methods from many areas of mathematics and physics. Natural questions involving noncommuting variables arise in abundance in many parts of mathematics and quantum mathematical physics. On the basis of ideas and methods from algebraic topology and Riemannian geometry, as well as from the theory of operator algebras and from homological algebra, an extensive machinery has been developed which permits the formulation and investigation of the geometric properties of noncommutative structures. This includes K-theory, cyclic homology and the theory of spectral triples. Areas of intense research in recent years are related to topics such as index theory, quantum groups and Hopf algebras, the Novikov- and Baum-Connes conjectures as well as to the study of specific questions in other fields such as number theory, modular forms, topological dynamical systems, renormalization theory, theoretical high-energy physics and string theory. Many results elucidate important properties of fascinating specific classes of examples that arise in many applications. The talks covered substantial new results and insights in several of the different areas in Noncommutative Geometry. The workshop was attended by 53 participants including 6 young researchers supported by the European Union.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.