Abstract
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted co-product. This allows for the definition of conformal symmetry in a non-commutative background geometry. The twisted co-product is reviewed for the Poincar\'e algebra and the construction is then extended to the full conformal algebra. It is demonstrated that conformal invariance need not be viewed as incompatible with non-commutative geometry; the non-commutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincar\'e algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.