Abstract

This paper is the third part of a series of papers whose aim is to use the framework of twisted spectral triples to study conformal geometry from a noncommutative geometric viewpoint. In this paper we reformulate the inequality of Vafa–Witten [42] in the setting of twisted spectral triples. This involves a notion of Poincaré duality for twisted spectral triples. Our main results have various consequences. In particular, we obtain a version in conformal geometry of the original inequality of Vafa–Witten, in the sense of an explicit control of the Vafa–Witten bound under conformal changes of metrics. This result has several noncommutative manifestations for conformal deformations of ordinary spectral triples, spectral triples associated with conformal weights on noncommutative tori, and spectral triples associated with duals of torsion-free discrete cocompact subgroups satisfying the Baum–Connes conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.