Abstract

The Sturm-Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born-Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that higher the value of noncommutative parameter and Born-Infeld parameter make the condensate harder to form. We also observe that the critical temperature depends on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.