Abstract
It is known, from a simple algebraic computation, that every Hilbert-Schmidt operator on the Fock space admits a Maassen-Meyer kernel. Maassen-Meyer kernels are a non-commutative extension of the usual notion of chaotic expansion of random variables. Using an extension of the non-commutative stochastic integrals which allows to define these integrals on the whole Fock space, we prove that a Hilbert-Schmidt operator on Fock space is the sum of a series of iterated non-commutative stochastic integrals with respect to the basic theree quantum noises. In this way we recover its Maassen-Meyer kernel which can be completely described from the operator itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.