Abstract

Clinically, calcific aortic valve disease is a progressive continuum from obstructive fibro(sclero)tic valve thickening to aortic stenosis. Recent evidence suggests that, in addition to nonbone miscellaneous mineralization, calcified valves present distinct signs of active bone remodeling; and in this context, noncollagenous bone-associated proteins are assumed to have a critical role. The expression of 5 bone matrix proteins-bone morphogenetic protein-2 and -4, bone sialoprotein II, osteopontin, and osteoprotegerin-was examined by reverse transcriptase polymerase chain reaction (n = 31) and immunolabeling (n = 83) in the clinical continuum from healthy pliable valves to heavily calcified ones. As a known structural pathologic sign, the extent of neovascularization was also examined. We observed progressive increase in the gene expression of osteopontin (7.4-fold elevation, P < .001) and bone sialoprotein II (5.8-fold elevation, P < .05), and also 1.7-fold elevation (P < .05) in osteoprotegerin gene expression during the disease course. These findings were congruent with that of immunohistochemical analysis. Surprisingly, bone morphogenetic protein-2 and -4 showed a comparable significant decrease in messenger RNA levels in calcified valves (P < .01 and P < .05, respectively). Our results support the view that aortic valve calcification is an actively regulated process. Furthermore, the results suggest that the expression of pro- and anticalcific noncollagenous bone-associated matrix proteins is altered during the disease continuum and that this imbalance may contribute to the pathology of calcific aortic valve disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.