Abstract

BackgroundUrothelial bladder cancer (UBC) is one of the most lethal urological malignancies in the world. Patients with UBC are routinely given chemotherapy which results in a median survival of 12-15 months. Nuclear-enriched abundant transcript 1 (NEAT1) functions as an oncogene and could be used as a therapeutic target for human UBC. However, the involvement of NEAT1 in doxorubicin (DOX) resistance of UBC has been poorly demonstrated.MethodsQuantitative Real-time PCR (qRT-PCR) was used to detect the expression levels of NEAT1 and miR-214-3p in UBC tissues and cells. Bioinformatics prediction, RNA pull-down and qRT-PCR were used to assay the regulation manner of NEAT1 and miR-214-3p. Loss/gain function of NEAT1 and miR-214-3p together with western blot, drug resistance assay and flow cytometry were used to explore the influence of NEAT1 in DOX resistance was correlative with miR-214-3p. Finally, luciferase assay system was applied to determine the Wnt/β-catenin signal activity.ResultsNEAT1 was upregulated and miR-214-3p was downregulated in DOX-resistant UBC tissues and cells. NEAT1 knockdown inhibited J82 and T24 cells to DOX chemosensitivity by negatively regulating miR-214-3p expression. NEAT1/miR-214-3p contributed to DOX resistance of UBC preliminary through the Wnt/β-catenin pathway.ConclusionNEAT1 contributed to DOX resistance of UBC through the Wnt/β-catenin pathway partly by negatively regulating miR-214-3p expression. Our findings will provide a promising ncRNA targeted therapeutic strategy for UBC with DOX resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call