Abstract

Recent contributions from DNA sequences have revolutionized our concept of systematic relationships in angiosperms. However, parts of the angiosperm tree remain unclear. Previous studies have been based on coding or rDNA regions of relatively conserved genes. A phylogeny for basal angiosperms based on noncoding, fast-evolving sequences of the chloroplast genome region trnT-trnF is presented. The recognition of simple direct repeats allowed a robust alignment. Mutational hot spots appear to be confined to certain sectors, as in two stem-loop regions of the trnL intron secondary structure. Our highly resolved and well-supported phylogeny depicts the New Caledonian Amborella as the sister to all other angiosperms, followed by Nymphaeaceae and an Austrobaileya-Illicium-Schisandra clade. Ceratophyllum is substantiated as a close relative of monocots, as is a monophyletic eumagnoliid clade consisting of Piperales plus Winterales sister to Laurales plus Magnoliales. Possible reasons for the striking congruence between the trnT-trnF based phylogeny and phylogenies generated from combined multi-gene, multi-genome data are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.