Abstract

PurposeTo assess the pharmacokinetic (PK)/pharmacodynamic (PD) relationship following intracameral Bimatoprost sustained-release (SR) implants (8, 15, 30, and 60 µg) in dogs to determine the optimal investigative dose in humans.MethodsForty-four male normotensive beagle dogs were assigned to 1 of 8 groups receiving 8-, 15-, 30-, and 60-µg implants (PD assessment [n = 8/group, 4 groups]; PK assessment [n = 3/group, 4 groups]). Intraocular pressure (IOP) in PD animals and aqueous humor/blood concentrations of bimatoprost and its acid in PK animals were assessed. PK/PD correlation analysis was performed using steady-state data. Residual implants were recovered to assess polymer degradation.ResultsDose-dependent IOP lowering was observed for all dose groups for at least 3 months postdose. Blood concentrations of bimatoprost and bimatoprost acid were below the limit of quantification (<0.25 ng/mL), whereas dose-dependent concentration-time profiles were observed in the aqueous humor. At steady state, observed and predicted correlation between aqueous humor drug concentration and IOP lowering was similar and translatable to findings in humans following topical bimatoprost eyedrop administration. Implants at all doses were well tolerated and polymer degradation was apparent.ConclusionsDose-dependent IOP lowering with Bimatoprost SR was maintained for at least 3 months in dogs, and the implants were well tolerated. The established PK/PD relationship appears to translate to humans. Doses between 8 and 15 µg appear to provide the best benefit/risk profile for clinical development of the implants.Translational RelevanceThe close PK/PD relationship between dog and human helps inform which bimatoprost dose should be investigated in clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call