Abstract
Pending updates to ICH S7B/E14 guidelines will enable the substitution of human TQT studies with support from concomitant negative hERG and non-rodent CV studies. This retrospective analysis compared the effects of thioridazine (THD) (5–20 mg/kg) on heart rate (HR), blood pressure (BP), body temperature (Tc), and QT in the dog (n = 6), cynomolgus monkey (n = 4), and Goettingen minipig (n = 4) with data from previously completed studies employing crossover designs. As QT measurements are confounded by HR and Tc changes, QT effects were individually corrected for changes in HR (QTca) and Tc (QTcaT). THD-induced hemodynamic changes seen in humans were most accurately reflected in the monkey and, to a lesser extent, the dog, but not in the minipig. The minipig was most sensitive to THD QTc effects. When QTca was adjusted for THD-associated Tc decreases in minipigs and monkeys, the minipig revealed a lessened but pronounced QTcaT increase (48 ms). In the monkey, a persistent QTca increase was reduced to only a transient (0.5–3 h) QTcaT increase (20 ms). The dog's lack of THD QTca effects triggered co-administration of atenolol (AT) to attenuate THD-induced HR increases in the dog and monkey. THD + AT revealed peak QTcaT increases of 32 ms in the dog and 40 ms in the monkey, suggesting potential autonomic nervous system (ANS) interference in detecting repolarization changes. These results highlight critical species-specific differences in the outcome of parallel safety investigations. Species selection for nonclinical safety studies should consider the potential impact of Tc and ANS effects to avoid false-negative or overly positive outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacological and Toxicological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.