Abstract

We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and on which measurements with imperfect detectors are made. The weak value of an observable can be expressed as a conditional expectation value over an infinite class of different generalized Kirkwood quasi-probability distributions. "Strange" weak values for which the real part exceeds the eigenvalue spectrum of the observable can only be found if the Terletsky-Margenau-Hill distribution is negative, or, equivalently, if the real part of the weak value of the density operator is negative. We find that a classical model of a weak measurement exists whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of the observable and the Terletsky-Margenau-Hill distribution is nonnegative. Strange weak values alone are not sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon number of the radiation field. Negative weak values of energy contradicts all classical stochastic models, whereas negative weak values of photon number contradict all classical stochastic models where the energy is bounded from below by the zero-point energy. We examine coherent states in particular, and find negative weak values with probabilities of 16% for kinetic energy (or squared field quadrature), 8% for harmonic oscillator energy and 50% for photon number. These experiments are robust against detector inefficiency and thermal noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.