Abstract
A superconducting qubit in the strong dispersive regime of circuit quantum electrodynamics is a powerful probe for microwave photons in a cavity mode. In this regime, a qubit excitation spectrum is split into multiple peaks, with each peak corresponding to an individual photon number in the cavity (discrete ac Stark shift). Here, we measure the qubit spectrum in a cavity that is driven continuously with a squeezed vacuum generated by a Josephson parametric amplifier. By fitting the obtained spectrum with a model which takes into account the finite qubit excitation power, we determine the photon number distribution, which reveals an even-odd photon number oscillation and quantitatively fulfills Klyshko's criterion for nonclassicality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.