Abstract
In this manuscript, we have quantitatively calculated the thermodynamic properties of the critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics method. It is found that Cr concentration distribution in the critical nuclei strongly depends on the overall Cr concentration as well as on the temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated by the phase-field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: (1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; (2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics and (3) a critical classical nucleus grows faster at the earlier growth stage than does a non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.