Abstract

We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5K the diffusivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semiphenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically thin van der Waals materials and their heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.