Abstract

Optomechanics and electromechanics have made it possible to prepare macroscopic mechanical oscillators in their quantum ground states, in quadrature squeezed states, and in entangled states of motion. In addition to coaxing ever larger and more tangible objects into a regime of quantum behavior, this new capability has encouraged ideas of using mechanical oscillators in the processing and communication of quantum information and as precision force sensors operating beyond the standard quantum limit. But the effectively linear interaction between motion and light or electricity precludes access to the broader class of quantum states of motion, such as cat states or energy squeezed states. Indeed, early optomechanical proposals noted the possibility to escape this restriction by creating strong quadratic coupling of motion to light. Although there have been experimental demonstrations of quadratically coupled optomechanical systems, these have not yet accessed nonclassical states of motion. Here we create nonclassical states by quadratically coupling motion to the energy levels of a Cooper-pair box (CPB) qubit. By monitoring the qubit's transition frequency, we detect the oscillator's phonon distribution rather than its position. Through microwave frequency drives that change both the state of the oscillator and qubit, we then dissipatively stabilize the oscillator in a state with a large mean phonon number of 43 and sub-Poissonian number fluctuations of approximately 3. In this energy squeezed state we observe a striking feature of the quadratic coupling: the recoil of the mechanical oscillator caused by qubit transitions, closely analogous to the vibronic transitions in molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call