Abstract

Conventionally, the effect of measurements on a quantum system is assumed to introduce decoherence, which renders the system classical-like. We consider here a microscopic meter, that is, an auxiliary essentially quantum system whose state is measured repeatedly, and show that it can be employed to induce transitions from classical states into inherently quantumlike states. The meter state is assumed to be lost in the environment and we derive a non-Markovian master equation for the dynamic system in the case of nondemolition coupling to the meter; this equation can be cast in the form of an $({N}_{a})$th-order differential equation in time, where ${N}_{a}$ is the dimension of the meter basis. We apply the approach to a harmonic oscillator coupled to a spin-$\frac{1}{2}$ meter and demonstrate how it can be used to engineer effective Hamiltonian evolution, subject to decoherence induced by the projective meter measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.