Abstract

A scheme for the generation of a nonclassical Bose-Einstein condensate is proposed in a Jg = 1 → Je = 0 system where ultracold atoms are populated in one ground-state sublevel |g-⟩ and form a Bose-Einstein condensate. By coupling the condensate to copropagating classical (σ-) and quantum (σ+) non-resonant travelling-wave laser fields, effective two-photon excitations between two ground-state sublevels |g-⟩ and |g+⟩ create a new condensate in |g+⟩. For an appropriate selection of the interaction time and atom-field coupling strengths, the quantum features of the quantized laser field, which may be prepared in a certain nonclassical state, can be exchanged with those of the quantum density field of the generated condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.