Abstract

The new bimetallic complex [(Ph2phen)2Ru(dpp)RhBr2(Ph2phen)](PF6)3 (1) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline; dpp = 2,3-bis(2-pyridyl)pyrazine) was synthesized and characterized to compare with the Cl(-) analogue [(Ph2phen)2Ru(dpp)RhCl2(Ph2phen)](PF6)3 (2) in an effort to better understand the role of halide coordination at the Rh metal center in solar H2 production schemes. Electrochemical properties of complex 1 display a reversible Ru(II/III) oxidation, and cathodic scans indicate multiple electrochemical mechanisms exist to reduce Rh(III) by two electrons to Rh(I) followed by a quasi-reversible dpp(0/-) ligand reduction. The weaker σ-donating ability of Br(-) vs Cl(-) impacts the cathodic electrochemistry and provides insight into photocatalytic function by these bimetallic supramolecules. Complexes 1 and 2 exhibit identical light-absorbing properties with UV absorption dominated by intraligand (IL) π → π* transitions and visible absorption by metal-to-ligand charge transfer (MLCT) transitions to include a lowest energy Ru(dπ) → dpp(π*) (1)MLCT transition (λ(abs) = 514 nm; ε = 16 000 M(-1) cm(-1)). The relatively short-lived, weakly emissive Ru(dπ) → dpp(π*) (3)MLCT excited state (τ = 46 ns) for both bimetallic complexes is attributed to intramolecular electron transfer from the (3)MLCT excited state to populate a low-energy Ru(dπ) → Rh(dσ*) triplet metal-to-metal charge transfer ((3)MMCT) excited state that allows photoinitiated electron collection. Complex 1 outperforms the related Cl(-) bimetallic analogue 2 as a H2 photocatalyst despite identical light-absorbing and excited-state properties. Additional H2 experiments with added halide suggest ion pairing plays a role in catalyst deactivation and provides new insight into observed differences in H2 production upon halide variation in Ru(II),Rh(III) supramolecular architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.