Abstract
A control strategy called hybrid position feedback control is applied to a bistable system to prevent multiple crossovers during actuation from one stable equilibrium to the other. The hybrid controller is based on a conventional positive position feedback controller. The controller uses the inertial properties of the structure around the stable positions to achieve large displacements by destabilizing a positive position feedback controller. Once the unstable equilibrium is reached, the controller is stabilized to converge to the target stable equilibrium. The bistable system under harmonic excitation and hybrid controller are investigated for its behavior. In addition, energy analysis of the system controlled by the hybrid controller is investigated using numerical time domain methods. The energy variance by parameters and the comparison between the open-loop system with harmonic excitation and the controlled system is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.