Abstract

AbstractThe rational design of crystal structures, in particular noncentrosymmetric materials, and how to differentiate polar, polar-chiral, and chiral structures, is an ongoing theme in crystal engineering. In KNaNbOF5, the combination of a second-order Jahn Teller active d0 transition metal oxyfluoride anionic unit and mixed K/Na cation coordination environments are shown to result in a polar structure (space group Pna21). The crystal structure analysis of the Na/K-O/F interactions reveals that the potassium cations form one of the two contacts to the under-bonded oxide ions. These interactions satisfy the expected bond valence sums and Pauling's second crystal rule (PSCR), leading to O/F ordering and acentric packing of the [NbOF5]2− anionic unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.