Abstract

Optically active luminescent materials based on lanthanide ions attract significant attention due to their unique spectroscopic properties, nonlinear optical activity, and the possibility of application as contactless sensors. Lanthanide metal-organic frameworks (Ln-MOFs) that exhibit strong second-harmonic generation (SHG) and are optically active in the NIR region are unexpectedly underrepresented. Moreover, such Ln-MOFs require ligands that are chiral and/or need multistep synthetic procedures. Here, we show that the NIR pulsed laser irradiation of the noncentrosymmetric, isostructural Ln-MOF materials (MOF-Er3+ (1) and codoped MOF-Yb3+/Er3+ (2)) that are constructed from simple, achiral organic substrates in a one-step procedure results in strong and tunable SHG activity. The SHG signals could be easily collected, exciting the materials in a broad NIR spectral range, from ≈800 to 1500 nm, resulting in the intense color of emission, observed in the entire visible spectral region. Moreover, upon excitation in the range of ≈900 to 1025 nm, the materials also exhibit the NIR luminescence of Er3+ ions, centered at ≈1550 nm. The use of a 975 nm pulse excitation allows simultaneous observations of the conventional NIR emission of Er3+ and the SHG signal, altogether tuned by the composition of the Ln-MOF materials. Taking the benefits of different thermal responses of the mentioned effects, we have developed a nonlinear optical thermometer based on lanthanide-MOF materials. In this system, the SHG signal decreases with temperature, whereas the NIR emission band of Er3+ slightly broadens, allowing ratiometric (Er3+ NIR 1550 nm/SHG 488 nm) temperature monitoring. Our study provides a groundwork for the rational design of readily available and self-monitoring NLO-active Ln-MOFs with the desired optical and electronic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call