Abstract

Materials containing multiple topological characteristics become more exotic when combined with noncentrosymmetric crystal structures and unusual magnetic phases such as the compensated half-metal state, which is gapped in one spin direction and conducting in the other. First principles calculations reveal these multiple topological features in the compensated half-metal Cr$_2$CoAl having neither time-reversal nor inversion symmetries. In the absence of (minor) spin-orbit coupling (SOC), there are (1) a total of twelve pairs of magnetic Weyl points, (2) three distinct sets of triple nodal points near the Fermi level that are (3) interconnected with six symmetry related nodal lines. This combination gives rise to fully spin polarized nexus fermions, in a system with broken time-reversal symmetry but negligible macroscopic magnetic field. The observed high Curie temperature of 750 K and calculated SOC hybridization mixing of several meV should make these nexus fermions readily measurable. Unlike topological features discussed for other Heuslers which emphasize their strong ferromagnetism, this compensated half-metal is impervious to typical magnetic fields, thus providing a complementary set of experimental phenomena. Making use of the soft calculated magnetic state, large magnetic fields can be used to rotate the direction of magnetism, during which certain topological features will evolve. Our results suggest that these features may be common in inverse-Heusler systems, particularly the isostructural and isovalent Ga and In analogs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.