Abstract

For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a Cayley graph, or, equivalently, a graph Γ on n vertices such that Aut Γ is transitive on vertices but none of its subgroups are regular on vertices? Previous work (by Alspach and Parsons, Frucht, Graver and Watkins, Marusic and Scapellato, and McKay and the second author) has produced answers to this question if n is prime, or divisible by the square of some prime, or if n is the product of two distinct primes. In this paper we consider the simplest unresolved case for even integers, namely for integers of the form n e 2pq, where 2 < q < p, and p and q are primes. We give a new construction of an infinite family of vertex-transitive graphs on 2pq vertices which are not Cayley graphs in the case where p ≡ 1 (mod q). Further, if p n 1 (mod q), p ≡ q ≡ 3(mod 4), and if every vertex-transitive graph of order pq is a Cayley graph, then it is shown that, either 2pq e 66, or every vertex-transitive graph of order 2pq admitting a transitive imprimitive group of automorphisms is a Cayley graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.