Abstract
This article reports the first results for gasification of lignin in supercritical water in the complete absence of metal catalysis, by using quartz reactors. It also reports the first systematic study of the effects of temperature, lignin loading, water density, and reaction time on the production of H2, CH4, CO, and CO2 from lignin in supercritical water. CH4 and CO2 are always the major products. CO is formed, and its yield decreases with time. The yield of H2 generally increases with time. With other variables fixed, the yields of H2, CH4, and CO2 increase with temperature but exhibit minima as lignin loading and water density increase. The CO yield decreases with increasing lignin loading, water density, and temperature. Manipulating lignin loading provides an efficient means to control the CH4/H2 molar ratio. The highest H2 yield was 7.1 mmol/g, obtained at 725 °C and 60 min. Supercritical water gasification at 5.0 wt % lignin loading and 600 °C provided the highest total gas yield (90 wt %).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.