Abstract

A wet air oxidation (WAO) process was applied to four selected pharmaceuticals (metoprolol, naproxen, amoxicillin, and phenacetin) individually dissolved in ultra-pure water, varying the temperature and oxygen pressure. Due to the moderate (amoxicillin) or low (metoprolol, naproxen, and phenacetin) efficiency found in the oxidation of these pollutants, a catalytic wet air oxidation (CWAO) process was then tested using a platinum catalyst supported on multi-walled carbon nanotubes (CNT). In this CWAO process, the pharmaceuticals were dissolved together in ultra-pure water and in four natural water matrices—a reservoir water, a groundwater, and two waters from different municipal wastewater treatment plants. On the basis of the measurements of their removals, a discussion is given of the influence of the main operating variables: the presence or absence of catalyst, type of catalyst (the synthesized Pt/CNT or a commercial Pt/AC), catalyst dosage (0.005–0.050 g), temperature (120–140 °C), and oxygen pressure (20–40 bar). In most experiments, the removals were in the sequence: amoxicillin > naproxen > phenacetin. In addition, total organic carbon (TOC) removal measurements were made of some of the natural waters tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call