Abstract

The Wnt–β-catenin signaling pathway has been shown to govern T cell development by regulating the growth and survival of progenitor T cells and immature thymocytes. We explore the role of noncanonical, Wnt–Ca2+ signaling in fetal T cell development by analyzing mice deficient for Wnt5a. Our findings reveal that Wnt5a produced in the thymic stromal epithelium does not alter the development of progenitor thymocytes, but regulates the survival of αβ lineage thymocytes. Loss of Wnt5a down-regulates Bax expression, promotes Bcl-2 expression, and inhibits apoptosis of CD4+CD8+ thymocytes, whereas exogenous Wnt5a increases apoptosis of fetal thymocytes in culture. Furthermore, Wnt5a overexpression increases apoptosis in T cells in vitro and increases protein kinase C (PKC) and calmodulin-dependent kinase II (CamKII) activity while inhibiting β-catenin expression and activity. Conversely, Wnt5a deficiency results in the inhibition of PKC activation, decreased CamKII activity, and elevation of β-catenin amounts in thymocytes. These results indicate that Wnt5a induction of the noncanonical Wnt–Ca2+ pathway alters canonical Wnt signaling and is critical for normal T cell development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.